102 research outputs found

    Scale Space Methods for Analysis of Type 2 Diabetes Patients' Blood Glucose Values

    Get PDF
    We describe how scale space methods can be used for quantitative analysis of blood glucose concentrations from type 2 diabetes patients. Blood glucose values were recorded voluntarily by the patients over one full year as part of a self-management process, where the time and frequency of the recordings are decided by the patients. This makes a unique dataset in its extent, though with a large variation in reliability of the recordings. Scale space and frequency space techniques are suited to reveal important features of unevenly sampled data, and useful for identifying medically relevant features for use both by patients as part of their self-management process, and provide useful information for physicians

    Bayesian modeling and significant features exploration in wavelet power spectra

    Get PDF
    This study proposes and justifies a Bayesian approach to modeling wavelet coefficients and finding statistically significant features in wavelet power spectra. The approach utilizes ideas elaborated in scale-space smoothing methods and wavelet data analysis. We treat each scale of the discrete wavelet decomposition as a sequence of independent random variables and then apply Bayes' rule for constructing the posterior distribution of the smoothed wavelet coefficients. Samples drawn from the posterior are subsequently used for finding the estimate of the true wavelet spectrum at each scale. The method offers two different significance testing procedures for wavelet spectra. A traditional approach assesses the statistical significance against a red noise background. The second procedure tests for homoscedasticity of the wavelet power assessing whether the spectrum derivative significantly differs from zero at each particular point of the spectrum. Case studies with simulated data and climatic time-series prove the method to be a potentially useful tool in data analysis

    Non-linear Hypothesis Testing of Geometric Object Properties of Shapes Applied to Hippocampi

    Get PDF
    This paper presents a novel method to test mean differences of geometric object properties (GOPs). The method is designed for data whose representations include both Euclidean and non-Euclidean elements. It is based on advanced statistical analysis methods such as backward means on spheres. We develop a suitable permutation test to find global and simultaneously individual morphological differences between two populations based on the GOPs. To demonstrate the sensitivity of the method, an analysis exploring differences between hippocampi of first-episode schizophrenics and controls is presented. Each hippocampus is represented by a discrete skeletal representation (s-rep). We investigate important model properties using the statistics of populations. These properties are highlighted by the s-rep model that allows accurate capture of the object interior and boundary while, by design, being suitable for statistical analysis of populations of objects. By supporting non-Euclidean GOPs such as direction vectors, the proposed hypothesis test is novel in the study of morphological shape differences. Suitable difference measures are proposed for each GOP. Both global and simultaneous GOP analyses showed statistically significant differences between the first-episode schizophrenics and controls

    On Data-Independent Properties for Density-Based Dissimilarity Measures in Hybrid Clustering

    Get PDF
    Hybrid clustering combines partitional and hierarchical clustering for computational effectiveness and versatility in cluster shape. In such clustering, a dissimilarity measure plays a crucial role in the hierarchical merging. The dissimilarity measure has great impact on the final clustering, and data-independent properties are needed to choose the right dissimilarity measure for the problem at hand. Properties for distance-based dissimilarity measures have been studied for decades, but properties for density-based dissimilarity measures have so far received little attention. Here, we propose six data-independent properties to evaluate density-based dissimilarity measures associated with hybrid clustering, regarding equality, orthogonality, symmetry, outlier and noise observations, and light-tailed models for heavy-tailed clusters. The significance of the properties is investigated, and we study some well-known dissimilarity measures based on Shannon entropy, misclassification rate, Bhattacharyya distance and Kullback-Leibler divergence with respect to the proposed properties. As none of them satisfy all the proposed properties, we introduce a new dissimilarity measure based on the Kullback-Leibler information and show that it satisfies all proposed properties. The effect of the proposed properties is also illustrated on several real and simulated data sets

    Reinforcement learning application in diabetes blood glucose control: A systematic review

    Get PDF
    Background: Reinforcement learning (RL) is a computational approach to understanding and automating goal-directed learning and decision-making. It is designed for problems which include a learning agent interacting with its environment to achieve a goal. For example, blood glucose (BG) control in diabetes mellitus (DM), where the learning agent and its environment are the controller and the body of the patient respectively. RL algorithms could be used to design a fully closed-loop controller, providing a truly personalized insulin dosage regimen based exclusively on the patient’s own data. Objective: In this review we aim to evaluate state-of-the-art RL approaches to designing BG control algorithms in DM patients, reporting successfully implemented RL algorithms in closed-loop, insulin infusion, decision support and personalized feedback in the context of DM. Methods: An exhaustive literature search was performed using different online databases, analyzing the literature from 1990 to 2019. In a first stage, a set of selection criteria were established in order to select the most relevant papers according to the title, keywords and abstract. Research questions were established and answered in a second stage, using the information extracted from the articles selected during the preliminary selection. Results: The initial search using title, keywords, and abstracts resulted in a total of 404 articles. After removal of duplicates from the record, 347 articles remained. An independent analysis and screening of the records against our inclusion and exclusion criteria defined in Methods section resulted in removal of 296 articles, leaving 51 relevant articles. A full-text assessment was conducted on the remaining relevant articles, which resulted in 29 relevant articles that were critically analyzed. The inter-rater agreement was measured using Cohen Kappa test, and disagreements were resolved through discussion. Conclusions: The advances in health technologies and mobile devices have facilitated the implementation of RL algorithms for optimal glycemic regulation in diabetes. However, there exists few articles in the literature focused on the application of these algorithms to the BG regulation problem. Moreover, such algorithms are designed for control tasks as BG adjustment and their use have increased recently in the diabetes research area, therefore we foresee RL algorithms will be used more frequently for BG control in the coming years. Furthermore, in the literature there is a lack of focus on aspects that influence BG level such as meal intakes and physical activity (PA), which should be included in the control problem. Finally, there exists a need to perform clinical validation of the algorithms

    Visualization and inference based on wavelet coefficients, SiZer and SiNos

    Get PDF
    SiZer (SIgnificant ZERo crossing of the derivatives) and SiNos (SIgnificant NOnStationarities) are scale-space based visualization tools for statistical inference. They are used to discover meaningful structure in data through exploratory analysis involving statistical smoothing techniques. Wavelet methods have been successfully used to analyze various types of time series. In this paper, we propose a new time series analysis approach, which combines the wavelet analysis with the visualization tools SiZer and SiNos. We use certain functions of wavelet coefficients at different scales as inputs, and then apply SiZer or SiNos to highlight potential non-stationarities. We show that this new methodology can reveal hidden local non-stationary behavior of time series, that are otherwise difficult to detect

    Control of Blood Glucose for Type-1 Diabetes by Using Reinforcement Learning with Feedforward Algorithm

    Get PDF
    Source at https://doi.org/10.1155/2018/4091497.Background: Type-1 diabetes is a condition caused by the lack of insulin hormone, which leads to an excessive increase in blood glucose level. The glucose kinetics process is difficult to control due to its complex and nonlinear nature and with state variables that are difficult to measure. Methods: This paper proposes a method for automatically calculating the basal and bolus insulin doses for patients with type-1 diabetes using reinforcement learning with feedforward controller. The algorithm is designed to keep the blood glucose stable and directly compensate for the external events such as food intake. Its performance was assessed using simulation on a blood glucose model. The usage of the Kalman filter with the controller was demonstrated to estimate unmeasurable state variables. Results: Comparison simulations between the proposed controller with the optimal reinforcement learning and the proportional-integral-derivative controller show that the proposed methodology has the best performance in regulating the fluctuation of the blood glucose. The proposed controller also improved the blood glucose responses and prevented hypoglycemia condition. Simulation of the control system in different uncertain conditions provided insights on how the inaccuracies of carbohydrate counting and meal-time reporting affect the performance of the control system. Conclusion: The proposed controller is an effective tool for reducing postmeal blood glucose rise and for countering the effects of external known events such as meal intake and maintaining blood glucose at a healthy level under uncertainties

    Automatic Segmentation of Dermoscopic Images by Iterative Classification

    Get PDF
    Accurate detection of the borders of skin lesions is a vital first step for computer aided diagnostic systems. This paper presents a novel automatic approach to segmentation of skin lesions that is particularly suitable for analysis of dermoscopic images. Assumptions about the image acquisition, in particular, the approximate location and color, are used to derive an automatic rule to select small seed regions, likely to correspond to samples of skin and the lesion of interest. The seed regions are used as initial training samples, and the lesion segmentation problem is treated as binary classification problem. An iterative hybrid classification strategy, based on a weighted combination of estimated posteriors of a linear and quadratic classifier, is used to update both the automatically selected training samples and the segmentation, increasing reliability and final accuracy, especially for those challenging images, where the contrast between the background skin and lesion is low
    • …
    corecore